Sustento técnico
Ante la creciente demanda de alimentos de la población mexicana, y en apego a lo establecido en la Constitución Política de los Estados Unidos Mexicanos, en cuyo Artículo 4o., párrafos tercero, cuarto y quinto, reconoce el derecho a la alimentación nutritiva, suficiente y de calidad, a la protección de la salud y a un medio ambiente sano para el desarrollo y bienestar de las personas; el gobierno de México ha impulsado la adopción de la agroecología como una alternativa para garantizar la producción agrícola sostenible, priorizando la conservación de los recursos naturales, así como la salud de los agroecosistemas, el medio ambiente y humana, a través del fomento a la producción de alimentos sanos, nutritivos y suficientes.
La implementación de prácticas agroecológicas validadas científicamente, su asimilación y masificación en el campo mexicano, evitará perpetuar aquellos problemas ecológicos ocasionados por el modelo de producción convencional impulsado a partir de la revolución verde y, en su lugar, transitar a una producción ambiental, social y culturalmente responsable preservando la riqueza biocultural mexicana.
Publicaciones
Toledo, VM, and Argueta, Q. (2024). The evolution of agroecology in
Mexico, 1920–2023. Elem Sci Anth, 12: 1. DOI: https://doi.org/ 10.1525/elementa.2023.00092
Escalona Aguilar, M. A., Becerra, M., Noriega Armella, M. I., Cerdán Fernández, C., Tercero Pérez, A. y Vilis Hernández, M. I. (2021). Agricultura sin Glifosato: Alternativas para una transición agroecológica. Greenpeace. 108 p.p. https://www.greenpeace.org/mexico/publicacion/49117/agricultura-sin-glifosato-alternativas-para-una-transicion-agroecologica/
Kremen, C., Iles, A. y Bacon, C. (2012). Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecology and Society, 17(4), 44. https://doi.org/10.5751/ES-05103-170444
Kremen, C. y Miles, A. (2012). Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecology and Society, 17(4), art40. https://doi.org/10.5751/ES-05035-170440
Liebman, M., Mohler, C. L. y Staver, C. P. (2001). Ecological management of agricultural weeds. Cambridge University Press. https://doi.org/10.1017/CBO9780511541810
Ramírez Muñoz, F. (2021). El herbicida glifosato y sus alternativas. Universidad Nacional de Costa Rica. 55 https://conahcyt.mx/cibiogem/images/cibiogem/Documentos-recopilatorios-relevantes/El_herbicida_glifosato_y_sus_alternativas_UNA.pdf
Rosa-Schleich, J., Loos, J., Mußhoff, O. y Tscharntke, T. (2019). Ecological-economic trade-offs of Diversified Farming Systems – A review. Ecological Economics, 160, 251-263. https://doi.org/10.1016/j.ecolecon.2019.03.002
Appleton, B., y Kauffman, K. (2000). Selection and Use of Mulches and Landscape Fabrics. Horticulture, 430(19), 35. https://vtechworks.lib.vt.edu/server/api/core/bitstreams/3095e216-41f6-4327-8844-9b528c4e2238/content
Chalker-Scott, . (2007) Impact of Mulches on Landscape Plants and the Environment — A Review. Journal of Environmental Horticulture, 25 (4): 239–249. https://doi.org/10.24266/0738-2898-25.4.239
Gan, Y., Siddique, K.H.M., Turner, N.C., Li, X.G., Niu, J.Y., Yang, C., Liu, L., Chai, Q., (2013). Ridge-furrow mulching systems–an innovative technique for boosting crop productivity in semiarid environments. Advances in Agronomy, 118, 429–476. https://doi.org/10.1016/B978-0-12-405942-9.00007-4
Ghosheh, H.Z. (2005). Constraints in implementing biological weed control: a review. Weed Biology and Management, 5, 83–92. https://doi.org/10.1111/j.1445-6664.2005.00163.x
Hernández, E. (2014) Manual Acolchados Vegetales y Películas Plásticas. Universidad Tecnológica Tula-Tepeji 59 p.p. https://www.uttt.edu.mx/extensionismo/Informacion/Publicaciones/Serie.%20Agricultura%20Regenerativa/4.-Acolchados%20vegetales.pdf
Ji, S., Unger, P.W. (2001). Soil water accumulation under different precipitation, potential evaporation and straw mulch conditions. Soil Science Society of America Journal, 65, 442– 448. https://doi.org/10.2136/sssaj2001.652442x
Kader, M. A, Senge, M., Mojid, M.A. y Ito, K. (2017). Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research,168 p.p. 155-166.https://doi.org/10.1016/j.still.2017.01.001.
Rokich, D.P., K.W. Dixon, K. Sivasithamparam, and K.A. Meney- KA. (2002). Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Restoration Ecology 10:185–194. https://doi.org/10.1046/j.1526-100X.2002.02040.x
Zegada-Lizarazu, W., Berliner, P.R., 2011. Inter-row mulch increase the water use efficiency of furrow-irrigated maize in an arid environment. Journal of Agronomy and Crop Science 197, 237–248. https://doi.org/10.1111/j.1439-037X.2010.00451.x
Zribi, W., Faci González, J. M. y Aragüés Lafarga, R. (2011). Efectos del acolchado sobre la humedad, temperatura, estructura y salinidad de suelos agrícolas. ITEA, 2 p.p. 148-162. https://dialnet.unirioja.es/servlet/articulo?codigo=3689040
Arenas, A. F. J., Hervalejo G. A. y De Luna A. E. (2015). Guía de cubiertas vegetales en cítricos. Folleto s/No. Sevilla 2015. Instituto de Investigación y Formación Agraria y Pesquera. Consejería de Agricultura, Pesca y Desarrollo Rural. Junta de Andalucía 12 p. https://www.juntadeandalucia.es/agriculturaypesca/ifapa/servifapa/registro-servifapa/aa0532aa-eede-450d-b799-6ff1648c391b
Arquero, Q. O., Serrano, C. N., Lovera, M. M y Romero, C. A. (2015). Guía de cubiertas vegetales en almendro. Folleto s/No. Sevilla 2015. Instituto de Investigación y Formación Agraria y Pesquera. Consejería de Agricultura, Pesca y Desarrollo Rural. Junta de Andalucía 32 p. https://www.juntadeandalucia.es/agriculturaypesca/ifapa/servifapa/registro-servifapa/78cbd014-6939-452d-b996-56478b48210f
Beaupré, A., Vega, J. R., Castañeda, H. E., Benítez, M., Van Cauwelaert, E. y González González, C. (2020). Pertinence of exotic and local green manures for sustainable maize polyculture in Oaxaca, Mexico. Renewable Agriculture and Food Systems 1–12. .https://doi.org/10.1017/S1742170520000137
Beaupré, A. y Herce, M. F. (2020). Uso de abonos verdes locales y exóticos con maíz nativo en los valles centrales de Oaxaca. Biodiversidad. https://www.biodiversidadla.org/Documentos/Uso-de-abonos-verdes-locales-y-exoticos-con-maiz-nativo-en-los-Valles-Centrales-de-Oaxaca
Büchi, L., Wendling, M., Amossé, C., Jeangros, B. y Charles, R. (2020). Cover crops to secure weed control strategies in a maize crop with reduced tillage. Field Crops Research, 247, https://doi.org/10.1016/j.fcr.2019.107583.
Klik, A., Rosner, J. y Loiskandl, J. (1998). Effects of temporary and permanent soil cover on grape yield and soil chemical and physical properties. Journal of Soil and Water Conservation 53(3): 249-525. https://www.jswconline.org/content/53/3/249
Martín, G. M., Costa, J. R., Urquiaga, S. y Rivera, R. A. (2007). Rotación del abono verde canavalia ensiformis con maíz y micorrizas arbusculares en un suelo nitisol ródico éutrico de Cuba. Agronomía Tropical, 57(4), 313-321. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2007000400007
Brito, A., Pérez, R., Mazorra, C. y Gutiérrez, I. (2007). Control biológico de especies arvenses en plantaciones de guayaba (Psidium guajava) mediante el uso de coberturas vivas de leguminosas. Avances en Investigación Agropecuaria, 11. http://ww.ucol.mx/revaia/pdf/2007/mayo/5.pdf
Rebolledo-Martínez, A., Del Ángel-Pérez, A. L., Megchúm-García, J. V., Adame-García. J., Nataren-Velázquez, J. y Capetillo-Burela, A. (2011). Coberteras vivas para el manejo de malezas en mango (Mangifera indical L.) cv. Manila. Tropical and Subtropical Agroecosystems, 13:327338. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1411
Rosa, A. T., Creech, C. F., Elmore, R. W., Rudnick, D. R., Lindquist, J. L., Fudolig, M., Butts, L. y Werle, R. (2021). Implications of cover crop planting and termination timing on rainfed maize production in semi-arid cropping systems. Field Crops Research, 271. https://doi.org/10.1016/j.fcr.2021.108251.
Tarango, R. S. H. (2010). Manejo de la cubierta vegetal en nogaleras con fertirriego. INIFAP-CIRNOC-C.Folleto técnico núm. 34. 24 p. http://www.comenuez.com/assets/manejo-de-la-cubierta-vegetal-en-nogaleras-con-fertirriego-1.pdf
Teasdale, J. R., Besat, E. E. y Potts, E. W. (1991). Response of weeds to tillage and cover crop residue. Weed Science 39(2):195-199. https://www.jstor.org/stable/4044915
Dierauer, H., Conder, M., y Weidmann, G. (2017). Reducing weed seed pressure with the false seedbed technique. Retrieved from http://orgprints.org/31022/
Garnica, I., Lezáun, J. A., Delgado, J., y Garnica, J. (2017). El laboreo de verano para la gestión de malas hierbas en cereales de invierno. XVI Congreso de La Sociedad Española de Malherbología, 2013–2016. https://academica-e.unavarra.es/xmlui/handle/2454/27139
Hossain, M., y Begum, M. (2016). Soil weed seed bank: Importance and management for sustainable crop production- A Review. Journal of the Bangladesh Agricultural University, 13(2), 221-228 https://doi.org/10.3329/jbau.v13i2.28783
Johnson, W. C., y Mullinix, B. G. (2019). Weed Management in Peanut Using Stale Seedbed Techniques. Weed Science, 43(2), 293–297. https://www.jstor.org/stable/4045497
Kouwenhoven, J. K. (2002). Physical weed management systems. 4th EWRS Workshop on Physical and Cultural Weed Control, (February), 65. https://orgprints.org/216/1/Elspeet.pdf
Matloob, A., Khaliq, A., Tanveer, A., Hussain, S., Aslam, F., y Chauhan, B. S. (2015). Weed dynamics as influenced by tillage system, sowing time and weed competition duration in dry-seeded rice. Crop Protection, 71, 25–38. https://doi.org/10.1016/j.cropro.2015.01.009
Merfield, C. N. (2015). False and Stale Seedbeds: The most effective non-chemical weed management tools for cropping and pasture establishment. The FFC Bulletin, 2015(V4), 25. https://www.bhu.org.nz/future-farming-centre/information/bulletin/2015-v4/false-and-stale-seedbeds-the-most-effective-non-chemical-weed-management-tools-for-cropping-and-pasture-establishment/
Ock, H.-S., y Pyon, J.-Y. (2011). Trend and Perspective of Weed Control Techniques in Organic Farming. Korean Journal of Weed Science, 31(1), 8–23. https://doi.org/10.5660/kjws.2011.31.1.008 https://koreascience.kr/article/JAKO201110348673221.page
Schutte, B. J., Sanchez, A. D., Beck, L. L., y Idowu, O. J. (2021). False seedbeds reduce labor requirements for weeding in chile pepper. HortTechnology, 31(1), 64–73. https://doi.org/10.21273/HORTTECH04732-20
Blanco, Y., y Leyva, Á. (2007). Las Arvenses En: El Agroecosistema Y Sus Beneficios Naturales. Cultivos Tropicales, 28(2), 21–28. https://www.redalyc.org/pdf/1932/193217731003.pdf
Duarte, A. M., y Martins, A. (2005). Uso de desbrozadora como alternativa a los herbicidas en el control de malas hierbas en naranjo “Rhode”. Congreso 2005 de La Sociedad Española de Malherbología USO, (March), 5. https://sapientia.ualg.pt/handle/10400.1/10373
Gómez, M. A., Gómez, L., Schwentesius, R., Rodríguez, O., Reyes, R., y Villatoro, M. (2017). Guía agroecológica para la producción de naranja orgánica (R. Miranda Pérez y A. Barrera González, Eds.). Chapingo: Universidad Autónoma de Chapingo. http://www.comerciojustomx.org/publicacion/31
Gómez Tovar, L., y Gómez Cruz, M. Á. (2022). Sustitución de glifosato en la producción de naranja orgánica en el Norte de Veracruz , México. Studies in Environmental and Animal Sciences, 3(1), 103–117. https://doi.org/10.54020/seasv3n1-007
Pla, A. C. y Quiroz, A. (2020). Motocultor, uso y beneficios. Proyecto agrobiodiversidad mexicana. https://alimentacion.conahcyt.mx/glifosato/descargables/alternativas/materiales/Manual_Motocultor_2020.pdf
Dai, J. y Dong, H. (2014). Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 155, 12. https://doi.org/10.1016/j.fcr.2013.09.017
Fahad, S., Hussain, S., Chauhan, B. S., Saud, S., Wu, C., Hassan, S., Tanveer, M., Jan, A. y Huang, J. (2015). Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Protection, 71, 8. https://doi.org/10.1016/j.cropro.2015.02.005
Forcella, F., Westgate, M. E. y Warnes, D. D. (1992). Effect of row width on herbicide and cultivation requirements in row crops. American Journal of Alternative Agriculture, 7(4), 161-167. https://doi.org/10.1017/S0889189300004756
Lanza, T. R., Machado, A. F. L., y Martelleto, L. A. P. (2017). Effect of planting densities of «BRS Princess» banana tree in the suppression of weeds. Planta Daninha, 35, 11. https://doi.org/10.1590/s0100-83582017350100054
Manalil, S., Coast, O., Werth, J. y Chauhan, B. S. (2017). Weed management in cotton (Gossypium hirsutum L.) through weed-crop competition: A review. Crop Protection, 95, 53-59. https://doi.org/10.1016/j.cropro.2016.08.008
Mhlanga, B., Chauhan, B. S., y Thierfelder, C. (2016). Weed management in maize using crop competition: A review. Crop Protection, 88, 9. https://doi.org/10.1016/j.cropro.2016.05.008
Mohammadi, G. R., Ghobadi, M. E., y Sheikheh-Poor, S. (2012). Phosphate Biofertilizer, Row Spacing and Plant Density Effects on Corn (Zea mays L.) Yield and Weed Growth. American Journal of Plant Sciences, 3, 425-429. 10.4236/ajps.2012.34051
Mutsaers, H. J. W. (1980). The effect of row orientation, date and latitude on light absorption by row crops. The Journal of Agricultural Science, 95, 381-386. doi:10.1017/S0021859600039411 https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/effect-of-row-orientation-date-and-latitude-on-light-absorption-by-row-crops/92DE77D77849EBD24DE034159D7B1DA8?utm_campaign=shareaholic&utm_medium=copy_link&utm_source=bookmark
Van der Meulen, A., y Chauhan, B. S. (2017). A review of weed management in wheat using crop competition. Crop Protection, 95, 38-44. https://doi.org/10.1016/j.cropro.2016.08.004
Weiner, J., Andersen, S. B., Wille, W. K. M., Griepentrog, H. W. y Olsen, J. (2010). Evolutionary Agroecology: The potential for cooperative, high density, weed suppressing cereals. Evolutionary Applications, 7. https://doi.org/10.1111/j.1752-4571.2010.00144.x
Aulakh, G. S., Singh, G. y Singh, A. (2019). Studies on Intercropping of Maize (Zea mays L.) with Pea (Pisum sativum L.) Genotype. Indian Journal of Ecology, 46(2), 5. https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&volume=46&issue=2&article=021
Beets, W. C. (1982). Multiple cropping and tropical farming systems. CRC Press. https://doi.org/10.1201/9780429036491
Daryanto, S., Fu, B., Zhao, W., Wang, S., Jacinthe, P. A. y Wang, L. (2020). Ecosystem service provision of grain legume and cereal intercropping in Africa. Agricultural Systems, 178, 102761. https://doi.org/10.1016/j.agsy.2019.102761
Francis, C. A. y Smith, M. E. (1985). Variety development for multiple cropping systems. Critical Reviews in Plant Sciences, 3(2), 133-168. https://doi.org/10.1080/07352688509382207
García-Barrios, L. (2001). Plant-Plant Interactions in Tropical Agriculture. En Tropical agroecosystems (pp. 12-58). CRC Press. https://www.taylorfrancis.com/chapters/mono/10.1201/9781420039887-5/plant%E2%80%93plant-interactions-tropical-agriculture-john-vandermeer al
García-Barrios, L. y Dechnik-Vazquez, Y. A. (2021). How multispecies intercrop advantage responds to water stress: A yield-component ecological framework and its experimental application. Frontiers of Agricultural Science and Engineering, 8(3), 416-431. https://doi.org/10.15302/J-FASE-2021412
Hong, Y., Heerink, N., Jin, S., Berentsen, P., Zhang, L. y Van der Werf, W. (2017). Intercropping and agroforestry in China – Current state and trends. Agriculture, Ecosystems y Environment, 244, 52-61. https://doi.org/10.1016/j.agee.2017.04.019
Joseph, K. X., Yaro, R. N., Soyel, J. K., Kofi, E. S. y Ghaney, P. (2018). Role of Intercropping in Modern Agriculture and Sustainability: A Review. British Journal of Science, 16(2), 67-75. http://www.ajournal.co.uk/pdfs/BSvolume16(2)/BSVol.16%20(2)%20Article%203.pdf
Knörzer, H., Graeff-Hönninger, S., Guo, B., Wang, P., y Claupein, W. (2009). The Rediscovery of Intercropping in China: A Traditional Cropping System for Future Chinese Agriculture – A Review. En E. Lichtfouse (Ed.), Climate Change, Intercropping, Pest Control and Beneficial Microorganisms (pp. 13-44). Springer Netherlands. https://doi.org/10.1007/978-90-481-2716-0_3
Li, C., Hoffland, E., Kuyper, T. W., Yu, Y., Zhang, C., Li, H., Zhang, F., y van der Werf, W. (2020). Syndromes of production in intercropping impact yield gains. Nature Plants, 6(6), 653-660. https://doi.org/10.1038/s41477-020-0680-9
Liebman, M., y Dyck, E. (1993). Crop Rotation and Intercropping Strategies for Weed Management. Ecological Applications, 3(1), 92-122. https://doi.org/10.2307/1941795
Martin-Guay, M.-O., Paquette, A., Dupras, J., y Rivest, D. (2018). The new Green Revolution: Sustainable intensification of agriculture by intercropping. Science of The Total Environment, 615, 767-772. https://doi.org/10.1016/j.scitotenv.2017.10.024
Mu, Y., Chai, Q., Yu, A., Yang, C., Qi, W., Feng, F., y Kong, X. (2013). Performance of Wheat/Maize Intercropping is a Function of Belowground Interspecies Interactions. Crop Science, 53(5), 2186-2194. https://doi.org/10.2135/cropsci2012.11.0619
Nwamini, L., Eruola, A., Makinde, A., Soaga, J., y Attah, J. (2020). Utilization of Maize–Millet-Okra Intercropping Systems in Western Nigeria. Journal of Meteorology and Climate Science, 18(1), 11. https://www.ajol.info/index.php/jmcs/article/view/201925
Osman, A. N., y Bayala, J. (2011). Performance of cowpea (Vigna unguiculata) and pearl millet (Pennisetum glaucum) intercropped under Parkia biglobosa in an agroforestry system in Burkina Faso. African Journal of Agricultural Research, 6(4), 10. https://www.internationalscholarsjournals.com/articles/performance-of-cowpea-vigna-unguiculata-and-pearl-millet-pennisetum-glaucum-intercropped-under-parkia-biglobosa-in-an-ag.pdf
Rezaei-Chianeh, E., Nassab, A. D. M., Shakiba, M. R., Ghassemi-Golezani, K., Aharizad, S., y Shekari, F. (2011). Intercropping of maize (Zea mays L.) and faba bean (Vicia faba L.) at different plant population densities. African Journal of Agricultural Research, 6(7), 8. https://www.internationalscholarsjournals.com/articles/intercropping-of-maize-zea-mays-l-and-faba-bean–vicia-faba-l-at-different-plant-population–densities-.pdf
Vandermeer, J. H. (Ed.). (2003). Tropical agroecosystems. CRC Press. https://doi.org/10.1201/9781420039887
Yu, Y., Stomph, T.-J., Makowski, D., y van der Werf, W. (2015). Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 184, 133-144. https://doi.org/10.1016/j.fcr.2015.09.010
Banful, B., Dzietror, A., Ofori, I. y Hemeng, O. B. (2000). Yield of plantain alley cropped with Leucaena leucocephala and Flemingia macrophylla in Kumasi, Ghana. Agroforestry Systems, 49, 11. https://doi.org/10.1023/A:1006335710243
Beer, J., Muschler, R., Kass, D. y Somarriba, E. (1998). Shade management in coffee and cacao plantations. Directions in Tropical Agroforestry Research, 53, 139-164. https://doi.org/10.1023/A:1005956528316
Bishaw, B., Soolanayakanahally, R., Karki, U. y Hagan, E. (2022). Agroforestry for sustainable production and resilient landscapes. Agroforestry Systems, 96(3), 447-451. https://doi.org/10.1007/s10457-022-00737-8
Cadena-Iñiguez, P., Camas-Gómez, R., López-Báez, W., López-Gómez, H. del C. y González-Cifuentes, J. H. (2018). El MIAF, una alternativa viable para laderas en áreas marginadas del sureste de México: Caso de estudio en Chiapas. Revista Mexicana de Ciencias Agrícolas, 9(7), 1351-1361. https://doi.org/10.29312/remexca.v9i7.1670
Cannell, M. G. R., Van Noordwijk, M. y Ong, C. K. (1996). The central agroforestry hypothesis: The trees must acquire resources that the crop would not otherwise acquire. Agroforestry Systems, 34(1), 27-31. https://doi.org/10.1007/BF00129630
Gallagher, R. S., Fernandes, E. C. M. y Mccallie, E. L. (1999). Weed management through short-term improved fallows in tropical agroecosystems. Agroforestry Systems, 47, 197-221. https://doi.org/10.1023/A:1006271614502
García-Barrios, L. (2003). Plant-Plant Interactions in Tropical Agriculture. En Tropical agroecosystems (pp. 12-58). CRC Press. https://www.taylorfrancis.com/chapters/mono/10.1201/9781420039887-5/plant%E2%80%93plant-interactions-tropical-agriculture-john-vandermeer
García-Barrios, L. y Ong, C. K. (2004). Ecological interactions, management lessons and design tools in tropical agroforestry systems. En P. K. R. Nair, M. R. Rao y L. E. Buck (Eds.). New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry, 2004 (Vol. 1). Springer Netherlands. https://doi.org/10.1007/978-94-017-2424-1_16
Kohli, R. K., Singh, H. P., Batish, D. R. y Jose, S. (2008). Ecological Interactions in Agroforestry: An Overview. En Ecological Basis of Agroforestry (1.a ed., p. 13). https://doi.org/10.1007/978-94-007-7723-1_7
Lacerda, F., Miranda, I., Kato, O. R., Bispo, C. J. C. y do Vale, I. (2013). Weed dynamics during the change of a degraded pasture to agroforestry system. Agroforestry Systems, 87(4), 909-916. https://doi.org/10.1007/s10457-013-9607-z
Moreno-Calles, A. I., Toledo, V. M. y Casas, A. (2014). Los sistemas agroforestales tradicionales de México: Una aproximación biocultural. Botanical Sciences, 91(4), 375. https://doi.org/10.17129/botsci.419
Nair, P. K. R., Kumar, B. M. y Nair, V. D. (2021). An Introduction to Agroforestry: Four Decades of Scientific Developments. Springer International Publishing. https://doi.org/10.1007/978-3-030-75358-0
Noble, I. R. y Dirzo, R. (1997). Forests as Human-Dominated Ecosystems. Science, 277(5325), 522-525. https://doi.org/10.1126/science.277.5325.522
Pumariño, L., Sileshi, G. W., Gripenberg, S., Kaartinen, R., Barrios, E., Muchane, M. N., Midega, C. y Jonsson, M. (2015). Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic and Applied Ecology, 16(7), 573-582. https://doi.org/10.1016/j.baae.2015.08.006
Rao, M. R., Nair, P. K. R. y Ong, C. K. (1998). Biophysical interactions in tropical agroforestry systems. Directions in Tropical Agroforestry Research, 53, 3-50. https://doi.org/10.1007/978-94-015-9008-2_1
Siaw, D. E. K. A., Kang, B. T. y Okali, D. U. U. (1991). Alley cropping with Leucaena leucocephala (Lam.) De Wit and Acioa barteri (Hook.f.) Engl. Agroforestry Systems, 14(3), 219-231. https://doi.org/10.1007/BF00115737
Soto-Pinto, L., Perfecto, I. y Caballero-Nieto, J. (2002). Shade over coffee: Its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agroforestry Systems, 55, 37-45. https://doi.org/10.1023/A:1020266709570
Staver, C., Guharay, F., Monterroso, D. y Muschler, R. G. (2001). Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agroforestry Systems, 53, 151-170. https://doi.org/10.1023/A:1013372403359
Torres-Zambrano, J. P., Cortés, J. I., Turrent, A., Volke, V. H., Ortiz, C. A. y Jiménez, A. (2021). Caracterización físico-química y clasificación del suelo de ladera manejado bajo el sistema Milpa Intercalada con Árboles Frutales. Teknos Revista Científica, 21(2), 35-45. https://doi.org/10.25044/25392190.1031
Vandermeer, J. (1995). The Ecological Basis of Alternative Agriculture. Annual Review of Ecology, Evolution, and Systematics, 26(201-224), 24. https://www.jstor.org/stable/2097205
Yamoah, C. F., Agboola, A. A. y Mulongoy, K. (1986). Decomposition, nitrogen release and weed control by prunings of selected alley cropping shrubs. Agroforestry Systems, 4(3), 239-246. https://doi.org/10.1007/BF02028358
Anderson, R. L. (2005). A Multi‐Tactic Approach to Manage Weed Population Dynamics in Crop Rotations. Agronomy Journal, 97(6), 1579-1583. https://doi.org/10.2134/agronj2005.0194
Chauhan, B. S., Singh, R. G. y Mahajan, G. (2012). Ecology and management of weeds under conservation agriculture: A review. Crop Protection, 38, 57-65. https://doi.org/10.1016/j.cropro.2012.03.010
Dorado, J., Del Monte, J. P. y López-Fando. (1997). Efectos de la rotación de cultivos y los sistemas de laboreo sobre la flora arvense en ambiente semiárido. 7. https://dialnet.unirioja.es/servlet/articulo?codigo=563885
Forcella, F. y Lindstrom, M. J. (1988). Weed Seed Populations in Ridge and Conventional Tillage. Weed Science, 36(4), 500-503. https://doi.org/10.1017/S0043174500075263
Karlen, D. L., Varvel, G. E., Bullock, D. G. y Cruse, R. M. (1994). Crop rotations for the 21st century. Advances in agronomy, 53, 45. https://doi.org/10.1016/S0065-2113(08)60611-2
Magdoff, F. y Van Es, H. (1993). Building Soils for Better Crops: Organic Matter Management (4.a ed., Vol. 156). http://journals.lww.com/00010694-199311000-00014
Shahzad, M., Hussain, M., Jabran, K., Farooq, M., Farooq, S., Gašparovič, K., Barboricova, M., Aljuaid, B. S., El-Shehawi, A. M. y Zuan, A. T. K. (2021). The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy, 11(10), 2088. https://doi.org/10.3390/agronomy11102088
Silva, P., Vergara, W. y Acevedo, E. (2015). Rotación de cultivos. En: Rastrojo de cultivos y residuos forestales. Programa de transferencia de prácticas alternativas al uso del fuego en la región del Bio-Bio. https://biblioteca.inia.cl/handle/20.500.14001/7856
Weisberger, D., Nichols, V., y Liebman, M. (2019). Does diversifying crop rotations suppress weeds? A meta-analysis. PLOS ONE, 14(7), e0219847. https://doi.org/10.1371/journal.pone.0219847
Ghanizadeh, H. y Harrington, K. C. (2019). Weed Management in New Zealand Pastures. Agronomy, 9(8), 448. https://doi.org/10.3390/agronomy9080448
Hartley, M. J., Atkinson, G. C., Bimler, K. H., James, T. K. y Popay, A. I. (1978). Control of barley grass by grazing management. Weed and Pest Control conference, Nueva Zelanda. https://journal.nzpps.org/index.php/pnzwpcc/article/view/9369
MacLaren, C., Storkey, J., Strauss, J., Swanepoel, P. y Dehnen‐Schmutz, K. (2019). Livestock in diverse cropping systems improve weed management and sustain yields whilst reducing inputs. Journal of Applied Ecology, 56(1), 144-156. https://doi.org/10.1111/1365-2664.13239
Marchetto, K. M., Wolf, T. M. y Larkin, D. J. (2021). The effectiveness of using targeted grazing for vegetation management: A meta‐analysis. Restoration Ecology, 29(5). https://doi.org/10.1111/rec.13422
Miller, Z. J., Menalled, F. D., Sainju, U. M., Lenssen, A. W. y Hatfield, P. G. (2015). Integrating Sheep Grazing into Cereal‐Based Crop Rotations: Spring Wheat Yields
and Weed Communities. Agronomy Journal, 107(1), 104-112. https://doi.org/10.2134/agronj14.0086
Quezada, M. (2020). Aversión inducida: Uso de ovinos para el cotrol de malezas (Desarrollo de un proyecto Piloto de Innovación Territorial en Restauración). INIA. https://bibliotecadigital.fia.cl/items/9570e31e-1c94-4ccf-8fe7-74bf565e9c0d/full
Sánchez, L. E. y Chacón, C. (2000). Control de malezas en café usando ovinos. Revista de la Facultad de Agronomía, 17, 424-433. https://produccioncientificaluz.org/index.php/agronomia/article/view/26372
Sanderson, M. A., Archer, D., Hendrickson, J., Kronberg, S., Liebig, M., Nichols, K., Schmer, M., Tanaka, D. y Aguilar, J. (2013). Diversification and ecosystem services for conservation agriculture: Outcomes from pastures and integrated crop–livestock systems. Renewable Agriculture and Food Systems, 28(2), 129-144. https://doi.org/10.1017/S1742170512000312
Schuster, M. Z., Lustosa, S. B. C., Pelissari, A., Harrison, S. K., Sulc, R. M., Deiss, L., Lang, C. R., de Faccio Carvalho, P. C., Gazziero, D. L. P. y de Moraes, A. (2019). Optimizing forage allowance for productivity and weed management in integrated crop-livestock systems. Agronomy for Sustainable Development, 39(2), 18. https://doi.org/10.1007/s13593-019-0564-4
Tohiran, K. A., Nobilly, F., Zulkifli, R., Maxwell, T., Moslim, R. y Azhar, B. (2017). Targeted cattle grazing as an alternative to herbicides for controlling weeds in bird-friendly oil palm plantations. Agronomy for Sustainable Development, 37(6), 62. https://doi.org/10.1007/s13593-017-0471-5
Tracy, B. F. y Davis, A. S. (2009). Weed Biomass and Species Composition as Affected by an Integrated Crop-Livestock System. Crop Science, 49(4), 1523-1530. https://doi.org/10.2135/cropsci2008.08.0488
Ash, G. J. (2010). The science, art and business of successful bioherbicides. Biological Control, 52(3), 230-240. https://doi.org/10.1016/j.biocontrol.2009.08.007
Auld, B. A. y Morin, L. (1995). Constraints in the Development of Bioherbicides. Weed Technology, 9(3), 638-652. https://doi.org/10.1017/S0890037X00023964
Bailey, K. L. (2014). The Bioherbicide Approach to Weed Control Using Plant Pathogens. En Integrated Pest Management (pp. 245-266). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00014-2
Cai, X. y Gu, M. (2016). Bioherbicides in Organic Horticulture. Horticulturae, 2(2), 3. https://doi.org/10.3390/horticulturae2020003
Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., y Guillemin, J.-P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44-49. https://doi.org/10.1016/j.cropro.2016.04.016
Dayan, F. E. y Duke, S. O. (2014). Natural Compounds as Next-Generation Herbicides. Plant Physiology, 166(3), 1090-1105. https://doi.org/10.1104/pp.114.239061
Hasan, M., Ahmad-Hamdani, M. S., Rosli, A. M. y Hamdan, H. (2021). Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants, 10(6), 1212. https://doi.org/10.3390/plants10061212
Radhakrishnan, R., Alqarawi, A. A., y Abd-Allah, E. F. (2018). Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, 158, 131-138. https://doi.org/10.1016/j.ecoenv.2018.04.018
Raveau, R., Fontaine, J., y Lounès-Hadj Sahraoui, A. (2020). Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 9(3), 365. https://doi.org/10.3390/foods9030365
Bandopadhyay, S., Martin-Closas, L., Pelacho, A. M., y DeBruyn, J. M. (2018). Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Frontiers in Microbiology, 9, 819. https://doi.org/10.3389/fmicb.2018.00819
Hernández, E. (2014). Manual de acolchados vegetales y películas plásticas. Universidad Tecnológica de Tula-Tepeji. https://www.uttt.edu.mx/extensionismo/Informacion/Publicaciones/Serie.%20Agricultura%20Regenerativa/4.-Acolchados%20vegetales.pdf
Kasirajan, S., y Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 32(2), 501-529. https://doi.org/10.1007/s13593-011-0068-3
Kremer, R. J. (2005). The Role of Bioherbicides. Weed Management, 1(3), 15. https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0294-193032.pdf
Munguía, L. J., Quezada, M. R., Ibarra, J. L., Flores, V. J., Cedeño, R. B., & Hernández, C. F. (2003). Situación de la plasticultura en México. En: Congreso alianza tecnológica para la agricultura con calidad. Meléndez, G.; Bertsch, F.
Munguía López, J. P. (2020). Uso de acolchados plásticos en la agricultura. Serie de Seminarios Virtuales 2020. Colegio Mexicano de Ingenieros en Irrigación (COMEII). México. https://www.riego.mx/files/webinars/webinar30.pdf
Ortega, M. N. (2021). Una mirada a los plásticos en la agricultura de México. Plastics Technology Mexico. https://www.pt-mexico.com/articulos/una-mirada-a-los-plasticos-en-la-agricultura-de-mexico
Shah, F., y Wu, W. (2020). Use of plastic mulch in agriculture and strategies to mitigate the associated environmental concerns. Advances in Agronomy (Vol. 164, pp. 231-287). Elsevier. https://doi.org/10.1016/bs.agron.2020.06.005
Yang, N., Sun, Z.-X., Feng, L.-S., Zheng, M.-Z., Chi, D.-C., Meng, W.-Z., Hou, Z.-Y., Bai, W., y Li, K.-Y. (2015). Plastic Film Mulching for Water-Efficient Agricultural Applications and Degradable Films Materials Development Research. Materials and Manufacturing Processes, 30(2), 143-154. https://doi.org/10.1080/10426914.2014.930958
La información contenida en la presente plataforma deriva de los avances y resultados presentados en los proyectos apoyados por el Consejo Nacional de Humanidades Ciencias y Tecnologías. Su uso deberá realizarse con estricta responsabilidad y en apego a lo dispuesto en la Ley Federal del Derecho de Autor.